
RankBoost Acceleration on both NVIDIA CUDA and ATI Stream platforms

Bo WANG∗, Tianji WU∗, Feng YAN‡, Ruirui LI†, Ningyi XU† and Yu WANG∗
∗Department of Electronic Engineering

Tsinghua University
Beijing, China

Email: {wangb06, wutj06}@mails.tsinghua.edu.cn, yu-wang@mail.tsinghua.edu.cn
†Hardware Computing Group

Microsoft Research Asia
Beijing, China

Email: {v-ruirli, xu.ningyi}@microsoft.com
‡Department of Computer Science

Purdue University
West Lafayette, Indiana

Email: yan12@purdue.edu

Abstract—NVIDIA CUDA and ATI Stream are the two
major general-purpose GPU (GPGPU) computing technologies.
We implemented RankBoost, a web relevance ranking algo-
rithm, on both NVIDIA CUDA and ATI Stream platforms to
accelerate the algorithm and illustrate the differences between
these two technologies. It shows that the performances of
GPU programs are highly dependent on the utilization of
GPU’s hardware memory architectural features. In this work,
we accelerated RankBoost algorithm on both platforms, and
we achieved 22.9X speedup on CUDA and 9.2X speedup on
ATI Stream respectively. Then we made a comparison on the
differences of memory architecture between NVIDIA CUDA
and ATI Stream.

Keywords-GPGPU; CUDA; ATI Stream; RankBoost acceler-
ation

I. INTRODUCTION

Nowadays web search based services are becoming in-

creasingly important. One of the most vital features for a

search engine is the relevance of ranking, which gives an

order of returning pages in accordance with their similarities

to user’s input query. A lot of factors affect the ranking

function, such as URLs, authors, page freshness, and number

of occurrence. In an ever-growing web-scale system, it is

impossible to manually determine the weight of each factor

and combine them into a single function. Thus, machine

learning algorithms are adopted to produce ranking functions

from these large-scale training sets.
The machine learning algorithms learn ranking functions

from pairs of instances that have different relevance levels.

Many works have been done in this field. Earlier machine

learning algorithms for web ranking include Polynomial-

based regression [4], Genetic Programming [2], RankSVM

[5] and classification-based SVM [7]. However, these al-

gorithms are relatively time-consuming and only tested on

small datasets. Compared with the above ranking algorithms,

RankBoost has a faster ranking speed, and achieves good

relevance performance on large-scale datasets. Similar to

AdaBoost, RankBoost applies a boosting algorithm to the

ranking problem by combining the output of weak hypothe-

ses to learn a powerful ranking function. The efficiency and

satisfactory performance make this algorithm very promis-

ing.

However, the training process of RankBoost still takes a

long time. For example, the original RankBoost takes several

days to finish a training and obtain a model on the MSN

search engine [9], which is too slow for the regular ranking

model refreshing. Several methods have been proposed to

reduce the computation complexity of RankBoost in [3],

but none of them explore the parallel implementation of the

algorithm. Recently, several works explored the parallelism

of RankBoost. The FPGA based accelerator [9] implemented

a modified RankBoost algorithm (M3.int) to explore the

feature-level parallelism. Later, this parallelism is further

explored on a combination of hardware accelerators (FPGA)

and computer cluster with MPI [6].

The general purpose graphics processing units (GPGPU)

have emerged as a powerful platform for massively parallel

computation. There are two main computing platforms for

GPGPU, namely Computing Unified Device Architecture

(CUDA) proposed by NVIDIA and ATI Stream proposed

by AMD. In accordance with the specific architectures, we

implemented RankBoost algorithm on both platforms and

achieve 22.9X and 9.2X speedup on CUDA and ATI Stream

platforms respectively. Additionally we briefly compared the

two platforms and gave some recommendations for GPU

memory utilization.

The remainder of the paper is organized as follows. In

Section I, we introduce the RankBoost algorithm and review

related works. In Section III, both GeForce 9800 GTX+

architecture and ATI Radeon HD 4870 architecture are

briefly introduced to provide with a basic understanding for

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.115

284

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 



the implementation. In Section IV and Section V, imple-

mentations of RankBoost on CUDA and ATI Stream are

described respectively. Then we conduct a comparison of

these two implementations in Section VI. The experimental

results are presented and discussed in Section VII. Section

VIII concludes the paper.

II. PRELIMINARIES AND RELATED WORKS

A. The RankBoost Algorithm
RankBoost is a boosting algorithm for web search en-

gines, targeting to give an order for a set of documents based

on the relevance. Each document d is expressed by a feature

vector {fi(d)|i = 1, 2, ..., Nf}. RankBoost tries to combine

the weak hypotheses, which are functions of the features,

into a final strong hypothesis, with the help of pre-assigned

scores of the documents. These scores are usually given by

human experiences according to their relevance to the input

query. If document d0 scores higher than d1, then they form a

pair. In the RankBoost algorithm, we maintain a distribution

over all pairs, and each pair has a positive distribution value

D(d0, d1). A higher distribution means the more importance

of ranking a certain scored pair correctly. The distributions

are updated in each round, and those pairs that are not ranked

correctly by the weak hypotheses will gain more importance

with an increasing distribution.
The core procedure of RankBoost is called WeakLearn,

which, in each round, gives a weak ranking hypothesis

h based on the features of documents and the current

distributions. In the M3.int WeakLearn Algorithm [9], h is

binary, i.e. for any document d

hi,θ(d) =

{
0, if fi(d) < θ or fi(d) is undefined

1, if fi(d) ≥ θ

In WeakLearn procedure, the feature fi and threshold θ
are selected for h to maximize ranking correctness r, which

is defined as follow.

ri,θ =
∑
d0,d1

D(d0, d1)(hi,θ(d0)− hi,θ(d1))

The π value is defined to reduce the computation com-

plexity.

π(d) =
∑
d′

(D(d′, d)−D(d, d′))

ri,θ =
∑
d

hi,θ(d)π(d) =
∑

fi(d)≥θ

π(d)

To maximize r, WeakLearn has to explore all possible

thresholds at a certain interval and all possible features.
In M3.Int WeakLearn [9], for each feature fi, the values

fi(d) are classified into Nθ bins so that for each feature, r
is obtained by an integral histogram. That is, first calculate

the histogram of each feature:

Histi(b) =
∑

fi(d) in bin b

π(d)

Then r is obtained by calculating the prefix sum of the

histogram of each feature as follow:

ri,b =

Nθ∑
β=b

Histi(β)

The most time consuming procedure of RankBoost is

WeakLearn, which typically took more than 90% of all com-

putation time on CPU implementations. However, Weak-

Learn can be parallelized since the computation of both

histogram and prefix sum are parallelizable.

B. Parallelization Platforms

FAR (FPGA-based Accelerator for RankBoost) [9] is a

hardware acceleration engine for RankBoost, which signifi-

cantly improves the computation speed compared with CPU

M3.Int implementation. FAR utilizes an SIMD architecture

to implement RankBoost, with multiple processing engines

(PEs) concurrently building multiple integral histograms. It

utilizes the feature level parallelism.

FAR is based on an FPGA board with PCI (or PCI-e)

interface to the host system. Bin data, i.e. classified feature

data are first stored on to the FPGA board via PCI. In each

round, the updated π is transferred on to the board. And after

calculation, the maximum r and the corresponding feature

and bin are returned to the host, which then generate the

weak ranking hypothesis h.

Compared with the FPGA implementation FAR, GPU

has a similar SIMD architecture, which makes us believe

that RankBoost can also be accelerated on GPU platform.

Moreover, GPU usually has higher computation power to

price ratio than FPGA. On the other hand, programming on

GPU platform is generally easier since GPU programs are

instruction based software. Thus the GPU development cycle

is generally shorter than FPGA’s.

III. GPU ARCHITECTURE

In this section, we briefly introduce the architectures of

GeForce 9800 GTX+ and ATI Radeon HD 4870, which are

used in our experiments. The introduction here is to help

readers better understand the strategies and specific details

we adopt to implement the algorithm.

A. GeForce 9800 GTX+ Architecture

GeForce 9800 GTX+ is compatible with the NVIDIA

Compute Capability Specification 1.1 [8]. The GPU chip

on GeForce 9800 GTX+ has 16 multiprocessors, and each

multiprocessor consists of eight scalar processors. Scalar

processors of the same multiprocessor execute the same

instruction at any clock cycle, but may operate on different

data. Processors on the same multiprocessor can communi-

cate with each other by using a 16KB shared memory. [8]

285

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 



1) Computation: From the software viewpoint, threads

are the smallest unit of parallel computation and they are

assigned to multiprocessors in unit of blocks and each block

can hold a maximum of 512 threads in GeForce 9800 GTX+.

A thread block can only be assigned to one multiprocessor.

However, a multiprocessor can have several thread blocks.

In the case of Compute Capability 1.1, threads of a block are

scheduled in a warp size of 32. One thing should be noted

is that threads of the same warp execute exactly the same

instruction at one instruction issue. This feature is crucial for

the implementation of float atomic add operation, which

is described in Section IV.

2) Memory Hierarchy: There are six kinds of memory on

a CUDA compatible device and three most frequently used

kinds of memory are discussed below.

Register - A set of local 32-bit registers are available

for a multiprocessor. For a Compute Capability 1.1 device,

the total number of registers per multiprocessor is 8192.

Generally, accessing a register will cost only one clock

cycle so that it should be firstly used to achieve the best

performance.

Shared memory - A shared memory is an on-chip memory

which is shared by all scalar processors in a multiprocessor.

Each multiprocessor has a 16KB shared memory in Compute

Capability 1.1. The shared memory is divided into 16 banks.

Different banks can be accessed simultaneously. However,

when two or more threads are trying to access the same bank,

a bank conflict is generated and the accesses are serialized.

In the implementation of RankBoost, shared memory is used

to store histograms due to its capability of scalar processor

communication and fast access speed.

Global memory - Global memory is implemented as an

off-chip DRAM and the read/write latency is very high. A

single floating point value read operation may take 400 to

600 clock cycles. Additionally, the read and write operations

are not cached. To efficiently access the global memory, the

operations should be performed in a coalesced pattern, so

that the maximum memory bandwidth can be achieved.

B. ATI Radeon HD 4870 Architecture

AMD released a general purpose programming platform

for ATI GPUs, named ATI Stream [1]. In this section, we

briefly discuss the hardware functionality and character of

ATI RV770 GPGPU.

1) Computation: The stream cores or ALUs are orga-

nized as 5-way VLIW processors, called thread processors.

Each thread processor contains four normal cores that can

perform 32-bit integer or floating point arithmetic, and

one transcendental core that can perform transcendental

functions such as trigonometric or exponential functions.

These five cores can perform different scalar operations

concurrently if there are no data dependencies between them.

In RV770, 16 thread processors are grouped into a SIMD

engine and there are 10 SIMD engines altogether. All thread

processors in a SIMD engine performs the same instruction

at any time, but on different datasets; different SIMD engines

can perform different instructions.

There are two types of kernels, pixel shader (PS) and

compute shader (CS).

2) Memory Hierarchy: In RV770, several memory re-

sources can be used, each with different accessing con-

straints and speed. Utilizing the memory resources effec-

tively is usually the key to GPGPU programming, and this

is also true for ATI Stream platform.

general purpose registers (GPRs) are the fastest memo-

ries. Each thread has access to up to 127 GPRs in float4 type,

which is a short vector with 4 single precision floating point

elements, named x, y, z and w. At least 4 clause temporary

registers are included in GPRs. They can not preserve data

beyond a low-level ALU instruction clause.

local data sharing memory (LDS) - Each SIMD engine

has a 16KB LDS which enables low latency data sharing

between threads in the same SIMD. Every thread in a thread

group owns an equal sized part of the LDS memory that

it can write to; and every thread can read the whole LDS

memory. This access model prevents bank conflicts.

off-chip graphic memory is the largest and slowest mem-

ory resource. These memory resources are also called

streams. It supports several access models. Scratch buffer

- a read/write buffer similar to private GPRs, but supports a

much larger size since it is located in the off-chip memory.

Texture sampling - reads from read-only input streams into

GPRs, supports random accesses. Pixel output - writes to

write-only output streams to a hardware generated location

corresponding to the coordinates of the current thread. Each

thread can write to at most 8 streams, known as 8-way

Multiple Render Targets (MRT), which is only applicable

in pixel shader. Global buffer - a read/write buffer that all

threads have access to. This is the only output method for

compute shader.

Stream reading and writing is cached by hardware con-

trolled on-chip L1 and L2 caches. However, the global buffer

is uncached.

IV. ACCELERATION OF RANKBOOST WITH CUDA

As we have already discussed, the WeakLearn procedure

is the most time-consuming part of the RankBoost algorithm,

since it consists of histogram computation on a per-feature

basis, and the number of features is usually very large.

However, the histogram obtained from one feature does not

depend on those of other features. Thus, the histograms on

different features can be computed in parallel.

It should be noted that the histogram computation in

WeakLearn is different from the traditional histogram com-

putation, e.g. in computer vision. The tradition histogram

is to show the occurrence frequency of data elements.

Algorithm 1 is used to build a traditional histogram.

286

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. CUDA threads mapping scheme

Algorithm 1: Traditional Histogram

for i = 0 to DATA LENTH − 1 do
hist[data[i]] = hist[data[i]] + 1

end for

In WeakLearn, the algorithm computes a variant his-

togram, which increases the corresponding bin of a his-

togram with a float number, not always an integer 1 as

in the traditional one. Additionally, an integral operation is

conducted on the histogram to obtain the final result. We

name it float integral histogram in this paper. The detailed

operations are listed as Algorithm 2.

Algorithm 2: Float Integral Histogram

for i = 0 to DATA LENTH − 1 do
hist[data[i]] = hist[data[i]] + pi[i]

end for
for i = HISTO SIZE − 1 to 1 stride -1 do

hist[i-1] = hist[i-1] + hist[i]

end for

When mapping this algorithm to the GPU, the architecture

constraints should be taken into account. The index array

and the π array are very large and can only be stored in

the global memory. In the histogram algorithm, access to

these two arrays is sequential, or say coalesced. However,

due to the indetermination of the data in the index array, the

accesses to the array hist are random. Thus, it is optimal to

store the array hist in the shared memory, rather than the

global memory. The size of shared memory leads to several

further limitations.

To fully utilize GPU computation resources, we proposed

a mapping scheme that 32 threads, i.e. a warp of threads,

share a histogram in the shared memory. Fig. 1 is an

illustration of the mapping scheme. Threads read index

elements and corresponding π value from global memory

and perform the addition of π to a correspondent histogram

bin. Threads in a warp operate on every four data elements

consecutively, so the coalesced access requirement is met.

To maximize the computation resource utilization, we assign

7 warps, i.e. 224 threads, in a thread block. One warp

deals with a feature and maintains its own histogram. This

constraint is resulted from the 2KB memory requirement

for a 256-bin histogram. It is worth noting that we cannot

assign 8 warps because 16kb shared memory are not all

available for users, several bytes memory are reserved for

kernel launch and parameters passing.

Each index data element, which is an integer data, is

quantified to 8 bits. Thus, it takes only one 32bit read

operation to read four index data elements. To cooperate with

this compression, float4 type is used to store π values so

that the read of four π values is also done in one operation.

A critical problem we have to deal with is that two or more

threads may perform the addition at the same histogram

bin, which may lead to an error that only one addition

is successfully performed, because Compute Capability 1.1

device does not support atomic write in the shared memory.

To cope with this problem, we take advantage of the

SIMD mechanism that threads in the same warp always

execute same instructions at a clock cycle. Additionally, it is

guaranteed that when two or more threads collide on writing

to the same location, only one of them will succeed. With

these two properties, we define our float atomic addition
as Algorithm 3.

Algorithm 3: Float Atomic Addition

repeat
s hist[index].tag = thread tag
s hist[index].value = s hist[index].value + π

until s hist[index].tag == thread tag

Here, the tag is used as a flag to distinguish whether

a thread has successfully write in the π value. One thing

should be addressed is that the hardware scheduling mech-

anism guaranteed that the two operations on tag and on

value are done by the same thread in the same collision

condition. From the model above, we know that when n
threads are trying to write to the same location, exactly n
iterations will this loop be performed. Thus we can see that

287

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 



the conflicts will decrease the performance and the algorithm

efficiency is data-dependent.

V. ACCELERATION OF RANKBOOST WITH ATI STREAM

The fundamentals of implementing RankBoost on ATI

Stream platform are similar to that of the CUDA platform,

but there are some special constraints to be concerned.

Firstly, each stream on ATI architecture has a size con-

straint that each dimension of the stream cannot exceed

8192 elements [1] . In other words, the maximum size for

a 1-D array is 8192, while the maximum size for a 2-D

matrix is 8192 × 8192. Since each element is 128 bits, the

maximum size of a stream is 8192× 8192× 128b = 1GB.

In ATI Brook+ language, a certain technique called address

virtualization can be used to virtually manipulate 1-D array

larger than 8192 elements. This is achieved basically by

cutting the 1-D array into smaller arrays to form a 2-D

matrix, with both height and width no more than 8192.

In our case, the size constraint means that the data of a

single feature cannot fit into a single row of a GPU stream.

For a single row, the maximum size is 8192elements ×
16B/elements = 128kB. Since each document’s value has

been mapped to a bin index ranging from 0 to 255, the

maximum document number for a single row is also 128k.

Nevertheless the documents number Ndoc can easily exceed

this number. Thus, the documents’ value (bin index) for

a single feature needs multiple rows to be stored, similar

to address virtualization, but in a 2-D manner, since we

have multiple features. Let the width of each row be wdoc,

which is also the width of the whole data stream, i.e.

wdoc = wstream. The height of a feature is

hfeature = �Ndoc/wdoc�
If there are M features in the stream, the total height of the

stream is

hstream = M�Ndoc/wdoc�
Secondly, we need to use scatter output instead of stream

output to export the result of the histogram, since each

pixel shader can write to at most 8 destinations (totally

32 floating-point numbers), which is not enough for our

histogram output. Scatter output uses the uncached global

buffer, which is a linear space capable for both reading

and writing. Generally, accessing global buffer is slower

than stream output, so the latter is preferred if possible.

However, in our case, scatter output is not the bottleneck

of the histogram algorithm, as discussed later.

Considering all these characteristics, we implement the

Weak Learn procedure with 4 GPU kernels that run one

by one sequentially. Fig. 2 shows the block diagram of the

procedure. The GPU kernels are discussed below.

Hist - partial histogram kernel. Each thread of this kernel

processes a single row of the input data stream to generate a

partial histogram. The output is a 2-D matrix with width of

64 (in terms of float4 elements, i.e. 256 floating points).

Each row of it represents the partial histogram of the

corresponding row in the input data stream. Therefore the

height of the output matrix is identical to the input, i.e.

hstream. Hist is the most time-consuming kernel among all

the 4 GPU kernels.

On the ATI Stream platform, each thread can up to 127

general purpose registers (GPRs), including at least 4 clause

temp registers. All GPRs are 128-bit wide, and support

relative addressing using a special register AR. So the 256-

histogram of each thread can be stored in 64 GPRs, which

is the fastest onboard memory resource. After obtaining the

partial histogram in GPRs, the kernel then exports the values

to the global buffer.

Reduce - merge the partial histogram to the final his-

togram. This kernel takes the output of Hist as input, adds up

the corresponding hfeature elements to generate the result.

Compared with the input stream, the output stream’s size is

reduced to 64×M(W ×H).
Expand - expand each float4 elements of the histogram

to 4 separate (float4) elements, each with x element as the

histogram data, and y, z elements as the feature and bin

coordinate. w elements are not used. The result is output

using stream write, with size expanded to 256×M(W×H).
Scan - calculate the prefix sum of each row of the

expanded histogram. The output stream has the same size

as the input stream, i.e. 256×M(W ×H). After Scan, the

results are transferred back to the CPU to find the maximal

value and weight updating. The maximum |r(fk, θks )| is

obtained after comparison, along with the index k, s and

α.

Each round of the above procedures processes M features.

To finish all dataset, we need �Nfeature/M� flows. M
should be chosen as large as possible, so that 1) the data

size for each flow is large enough to be mapped to enough

threads for GPU and 2) the overhead for changing kernels

can be minimized. However, a valid M value should ensure

that 1) hstream do not exceed the limit of 8192 and 2) the

Graphics Card has enough onboard memory space.

VI. IMPLEMENTATION COMPARISONS

In this section, the differences between the CUDA imple-

mentation and the ATI Stream implementation are discussed.

From these differences we put forward some comments for

these two GPGPU platforms.

A. Mapping Scheme Differences

As we have discussed in Section V, the ATI Stream

architecture does not support 2-D matrix with either width

or height larger than 8192. CUDA, on the other hand, does

not have such constraints. That is why it is necessary to

fold the data of each feature into multiple lines on the

ATI architecture. After folding, the fact that each feature

is represented as a 2-D matrix naturally lead to the threads

288

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. ATI Stream WeakLearn scheme

mapping scheme based on rows (or columns) of features, i.e.

each thread process one row of a (folded) feature matrix.

This mapping scheme not only eases the complicity of

addressing corresponding data of a certain thread given the

thread ID (or coordinates), but also, on the ATI architecture,

shows better performance than our mapping scheme for

CUDA.

B. Shared Memory Size Constraint

On a CUDA Compute Capability 1.1 device, there are

only 16kB shared memories for a thread block, which denies

the naive idea that a block contains more than 15 threads

and each thread has its own sub-histogram. To maintain high

parallelism and maximize the resource utilization, the float

atomic addition operation is adopted. However, this further

leads to the write conflicts.

On the ATI Stream side, things are much better. Registers

can be used to store private histogram for each thread. No

write conflicts or data dependency exist here. However, ATI

Compute Abstract Layer (CAL) with Intermediate Language

(IL) has to be used to utilize the registers as arrays.

For future development of CUDA devices, the increase

of shared memory size will relieve this constraint and allow

higher parallelism. Nonetheless, support for the float atomic

operations on shared memory is also of great help for higher

efficiency.

C. Shared Memory Access Model

In our CUDA implementation, the per-multiprocessor

shared memory is used to store and accumulate the his-

tograms. However, this is inapplicable for the ATI Stream

architecture, since currently, ATI Stream does not support

the shared memory access model like CUDA.

Although there are 16kB of per-SIMD local shared mem-

ory (LDS) available on RV770 GPGPU, it only supports

a write-private read-anywhere model. In this model, each

thread owns an equal piece of the LDS. Each thread can

only write to its own piece of the memory while being able

to read from any spaces owned by other threads in a same

thread group. The maximum size of memory that one thread

can own is 256B, which is not enough to store the result of

256-histogram (which needs 256B×4=1KB of memory). On

the other hand, the LDS currently supports only hardcoded

writing address, so that it cannot be used for accumulating

histograms.

Due to the differences in shared memory access models

between CUDA and ATI Stream, the histogram accumulators

differ, as well as the merge of several partial histograms of

a feature into one.

D. Comments on two platforms

Based on the above comparisons, the random-read

random-write access model enables GeForce 9800 GTX+ to

build histograms on the shared memory directly, while the

write-private read-anywhere access model prevents Radeon

HD 4870 from doing so. However, each thread of Radeon

HD 4870 can access up to 123 float4 type private registers

and up to 128 threads can work in one thread block. This

number is much bigger than the 8192 registers for a thread

block in GeForce 9800 GTX+. Additionally, registers in

Radeon HD 4870 support indexed addressing, which is

capable for applications such as building histograms.

The data type used in Radeon HD 4870 is organized in

four-component vectors, e.g. float4 type. This organization

is more suitable for those operations dealing with vectors.

While dealing with scalar type, although the compiler itself

can optimize the utilization of vector operations, it may

be more difficult for the programmer to fully exert the

computation power compared with GeForce 9800 GTX+.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the results of performance experi-

ments on a real dataset from a commercial search engine.

Then the differences of the two platforms are discussed.

Finally, two performance models for both implementations

are proposed.

289

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 



A. Experimental Results

To compare the acceleration of GPU platforms, we im-

plement an optimized CPU-based RankBoost i.e. M3.int [9].

Table I shows the parameters of the dataset.

Table I
PARAMETERS OF BENCHMARK DATASET

dataset
number of features 2,576
number of documents 173,354
number of pairs 2,927,004
data size 428MB

The algorithm has been run for 100 rounds, and the result

in Table II shows the average execution time for both CPU

and GPU implementations. The CPU results are done on a

computer with an Intel Pentium 4 3.2GHz processor, 1.5GB

DDR400 memory.

On the NVIDIA side, the GPU testing system has a

NVIDIA GeForce 9800 GTX+. On the ATI side, we use

an ATI Radeon HD 4870 (RV770 chip) graphic card. The

results we get are listed as follow.

Table II
COMPUTATION TIME FOR DATASET

Architecture
Time per round ms Speedup
WL Total WL Total

CPU 11844.4 12281.5 1 1
CUDA 99.1 536.5 120 22.9
ATI Stream 801.0 1328.0 14.8 9.2

In Table II, WL stands for WeakLearn procedure in

RankBoost. In the CPU version, WeakLearn procedure takes

about 96% computation time. With the acceleration of

CUDA and ATI Stream, this procedure is computed 120X

and 14.8X faster respectively and the major bottleneck turns

to be the other procedures of the algorithm, such as π
calculation and weight updating. Owing to the execution

time of the sequential procedures, the total speedup we

achieved is 22.9X and 9.2X respectively.

B. CUDA Performance Model

Compared with the thousands of iterations of training

process, the program initialization time is relatively small

and can be omitted. Here we only model the training process.

The performance model of CPU version has been defined

and analyzed in [9]. Let tCPU be the mean time of one

round execution. The performance model is

tCPU = αNpair + βCPUNfNdoc

The first item αNpair represents the time for π calcula-

tion and weight updating. The second item βCPUNfNdoc

represents the time for finding the best hypothesis.

The π calculation and weight updating in GPU are the

same as the CPU one. But the searching for the best weak

0
1

2
3

x 10
6 0

2

4

x 10
8

0

20

40

60

80

100

120

N
feature

*N
doc

N
pair

s
p
e
e
d
u
p

Figure 3. Estimated Speed-up of CUDA

hypothesis step is different. The π data is downloaded

to the GPU before the computation. The max r on each

feature and the corresponding bin are transferred back after

the computation. Data transfer between GPU and CPU is

through the PCI-E bus. Generally, the download speed is

faster than the upload speed in GPU. Thus we define

tdownload = aNdoc

tupload = bNf

where a is the coefficient of GPU download speed and b is

the coefficient of GPU upload speed.

As mentioned before, the CUDA-accelerated RankBoost

is data-dependent owing to the shared memory write conflict.

Therefore the computing time should take the characteristics

of dataset inside.

tCUDA = αNpair + βCUDANfNdoc

+ γPconflictNfNdoc + aNdoc + bNf

The first item is for π calculation and weight updating,

same as the CPU version. The second item is for fetching

data from the global memory, where βCUDA is recipro-

cal to global memory bandwidth. The time of addition is

directional proportional to max write conflicts in a warp

of threads. Thus, we define the percentage of the conflict

threshold values as

Pconflict =

∑
i (max conflicts in warp i)

NfNdoc

Fig. 3 shows the estimated speed up based on our system.

C. ATI Stream Performance Model

Now we model the execution time of each round in the

training process of the ATI GPGPU based implementation.

The execution time consists of three parts, GPU execution

time, CPU execution time and data transfer time.

290

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 



0
0.5

1
1.5

2
2.5

3

x 10
6

0

1

2

3

4

x 10
8

0

5

10

15

20

25

30

N
feature

*N
doc

N
pair

s
p

e
e

d
u

p

Figure 4. Estimated Speed-up of ATI Stream

The GPU execution time consists of the time spent for

executing the four GPU kernels. It has the following form.

tGPU = β1NfNdoc + b1Nf

The first term represents the total execution time of kernel

Hist and Reduce. The second term represents the total

execution time of kernel Expand and Scan.

The CPU time consists of the time for obtaining the

maximum r, weight update and π calculation. It has the

form

tCPU = αNpair + b2Nf

where the first term corresponds to the time of weight update

and π calculation, and the second term represents the time

for obtaining the maximum r.

In each round π values are downloaded onto the graphic

memory, and the integral histogram results are uploaded to

the system memory. The time taken for the former transfer

can be represented as aNdoc, the later can be represented as

b3Nf . To discuss the case that the dataset is too large that

only part of it can be stored in the local (graphic) memory,

we define γ as the portion of the data that can be fitted into

the graphic memory. In each round, the time taken to transfer

the data in the system memory to the graphic memory can

be represented as β2(1− γ)NfNdoc.

Then the performance model for the total execution time

is as follow.

t = αNpair + (β1 + β2(1− γ))NfNdoc

+ aNdoc + (b1 + b2 + b3)Nf

In real cases, the Ndoc term is so small that can be ignored.

Fig. 4 shows the estimated speed up of ATI Stream.

VIII. CONCLUSION

In this paper, we accelerated the RankBoost algorithm

by implementing the histogram procedure on both NVIDIA

CUDA and ATI Stream platforms. The program on these

two platforms outperforms the CPU counterpart by 22.9X

and 9.2X respectively. The implementation is guided by the

idea to maximize the parallelism and utilize memory more

efficiently. The major factor leading to the differences is the

memory hierarchy.

For the future work, the other parts of the RankBoost

algorithm can also be implemented on GPU to obtain

higher speedup. Streaming method can be used to remove

the constraints of the limited global memory size on the

GPU. Additionally, multi-GPU techniques can be adopted

to further exploit the parallelism of the algorithm.

ACKNOWLEDGEMENT

This work is supported by Microsoft Research Asia and

AMD China University Program. This work is also partially

supported by National Natural Science Foundation of China

(No.60870001), 863 project (No. 2009AA01Z130). The au-

thors would like to thank Bingsheng He for his support and

discussion in this work.

REFERENCES

[1] Advanced Micro Devices, Inc. ATI Stream Computing User
Guide, 2008.

[2] W. Fan and et al. Ranking function optimization for effective
web search by genetic programming: An empirical study.
HICSS, pages 8–16, January 2004.

[3] R. S. Y. S. Y. Freund and R. Iyer. An efficient boosting
algorithm for combining preferences. Journal of Machine
Learning Research, 4:933–969, 2003.

[4] N. Fuhr. Optimum polynomial retrieval functions based on the
probability ranking principle. ACM TOIS, 7(3):183–204, July
1989.

[5] T. Joachims. Optimizing search engines using click through
data. SIGKDD, pages 133–142, 2002.

[6] Z. Li, N. Xu, F. Hsu, X. Cai, R. Gao, and Z. Xia. Distributed
rankboost acceleration using fpga and mpi for web relevance
ranking. In ICPADS, 2008.

[7] R. Nallapati. Discriminative models for information retrieval.
SIGIR, pages 64–71, 2004.

[8] NVIDIA CORPORATION. CUDA Compute Unified Device
Architecture Programming Guide, 2008.

[9] N. Xu, X. Cai, R. Gao, L. Zhang, and F. H. Hsu. Fpga-based
accelerator design for rankboost in web search engines. In
International Conference on Field-Programmable Technology,
pages 33–40, 2007.

291

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:02:15 UTC from IEEE Xplore.  Restrictions apply. 


